

Examiners' Report June 2012

GCE Physics 6PH02 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service. See the ResultsPlus section below on how to get these details if you don't have them already.

ResultsPlus

Get more from your exam results

...and now your mock results too!

ResultsPlus is Edexcel's free online service giving instant and detailed analysis of your students' exam and mock performance, helping you to help them more effectively.

- See your students' scores for every exam question
- Spot topics, skills and types of question where they need to improve their learning
- Understand how your students' performance compares with Edexcel national averages
- Track progress against target grades and focus revision more effectively with NEW Mock Analysis

For more information on ResultsPlus, or to log in, visit <u>www.edexcel.com/resultsplus</u>. To set up your ResultsPlus account, call us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk.

June 2012

Publications Code US032779

All the material in this publication is copyright $\ensuremath{\mathbb{C}}$ Pearson Education Ltd 2012

Introduction

The paper showed good progression from GCSE, allowing candidates across the ability range to demonstrate their knowledge and understanding of Physics in a range of relevant topics, the Multiple Choice questions in Section A ensuring breadth of coverage of the specification.

Section A

There was a broad correlation between performance in Section A and performance in the rest of the paper, with a fair proportion of candidates at A grade getting 10 correct answers and a typical E grade candidate scoring 5 or 6.

Question	Correct responses (%)
1	78
2	85
3	65
4	65
5	27
6	70
7	86
8	87
9	56
10	36

Questions 5 and 10 were particularly poorly answered across the ability range, with the favoured answers being A and C respectively.

In question 5 this suggests that many candidates did not read the question fully but just saw 'Ohm's law' and looked for a straight line graph. Had they checked the axes it should have suggested to them that this could not be the correct answer, even if they couldn't pick out graph D. It may be that many are not familiar with an x^2 graph, since the answers to question 18 often referred, incorrectly, to V²/R, so they are aware of it.

In question 10 all of the answers may be true of a data logging system, but a full reading of the question shows that a number of readings are required during a period of one second. B, C and D represent improvements over a person taking measurements, but a human could never take repeated readings over this time scale, so A is the *best* answer, as asked for.

Question 11(a)

With just under half gaining at least one mark, many candidates seemed to have difficulty with interpreting the basic circuit diagram and what happened with different permutations of open and closed switches, although they presumably have had experience of identifying illuminated light bulbs in circuits with various switch combinations since Key Stage 3 or earlier. A frequent value for the first combination was zero, as if they thought there would be no current with A open and therefore no resistance, although we did not see infinite resistance given as the answer as one might expect in this case.

Candidates who interpreted the circuits correctly often had difficulty with calculating resistors in parallel and many who knew how to apply the formula from the list correctly did not give the answer in a simple form but left it in inverse form.

Switch combinations	Total circuit resistance
A open. B closed	R
A open. B open	2R
A closed. B closed	R+R=2
A closed. B open	$\frac{1}{22} + \frac{1}{22} = \frac{2}{22} + \frac{1}{22} = \frac{3}{22}$

The candidate has been able to select and apply formula for the sum of the resistors in parallel, but has not found the inverse for answer.

The table gives the four possible combinations of the two switches. Complete the table to show the total circuit resistance for each switch combination.

(3)

Switch combinations	Total circuit resistance
A open. B closed	R
A open. B open	äR
A closed. B closed	$('_{R} + '_{eR})$
A closed. B open	(1R+5R)

While this answer has recognised the need to find the inverse for the final answer, these have not been put in their simplest form and represent partial answers, gaining no credit.

Question 11(b-c)

Whilst about half of the candidates gave a correct answer to part (c), there was much less success with part (b). A common error was to pick the power equation $P = I^2R$, perhaps thinking of 'Joule heating', and to state that the combination with the highest resistance therefore dissipates the most energy in a given time. The implicit assumption is that current remains constant, rather than potential difference. Most successful responses showed a realisation that the rate of energy dissipation is greatest for the lowest resistance, although they did not always justify this by reference to $P = V^2/R$, or the reduction in current and P = VI.

About half of the responses identified a reduction in output with an internal resistance, many of those justifying it by reference to 'lost volts', reduced current or increased total resistance. Many candidates, however, appeared to ignore the last part of the question, 'of the heater', and described increased output by the circuit as a whole due to the contribution of the output of the internal resistance.

(b) Explain which switch combination dissipates the most energy in a given time. (2)Switch A chosed and switch Bopen gorces the current to travel though with the highest tance which will dissipate more energy due to a higher CT. Cl. Jon A. P. C. (c) The power supply is replaced by one with an internal resistance. Explain what effect this change will have on the thermal energy output of the heater. (2)The More heat will be generated due to increased priction in the power supply **Examiner Comments** (b) This candidate correctly identifies the greatest resistance, but links it to the greatest rate of dissipation of energy, ignoring the effect on current. (c) The situation is further misinterpreted. The question clearly refers to the output of the heater, but the candidate is including heat dissipation in the power supply. Result **Examiner Tip** A very old tip, but read the question carefully!

	(b) Explain which switch combination dissipates the most energy in a given time. (2)
	When A closed, B closed, dissipates the most energy
	in a given time, resistance is smallest so more
	current can go -through.
*****	(c) The power supply is replaced by one with an internal resistance.
	Explain what effect this change will have on the thermal energy output of the heater. (2)
	Total circuit resistance increase, so workdone
F1 1 *** E	on resistance increase, ontput of thermal energy
2510020	will increase as more energy lost from heart.
	PesultsPlus

(b) The circuit with the smallest resistance has been correctly chosen, but the reason has not been given to satisfy the instruction to 'explain'.

(c) The effect on the resistance of the circuit has been identified, but the effect on the output of the heater alone has not been.

Examiner Comments

Remember to give reasons for effects and not just describe them when told to 'explain'.

Question 12

The majority scored at least 3 or 4 for the whole question, typically distributed between the parts. There was sometimes ambiguity in parts (a)(i) and (ii) when the word 'faster' was used because it could apply to speed or rate.

(a)(i) The increased energy of the electron was frequently stated, although not so often as maximum kinetic energy, but not so often explained by reference to increased photon energy. E=hf was often quoted without explanation of its significance. A number of candidates identified increased light energy, but not linked to photons, and thought there would be more electrons emitted.

(a)(ii) Candidates usually stated that more electrons would be emitted and frequently linked this to more photons, but they rarely linked either of these with rate or 'per second', and so only gained one mark.

(b) The great majority of candidates correctly identified at least one observation from the photoelectric effect and identified the relevance of photons or work function energy. Although some candidates struggled to order their responses logically, adopting a scatter gun approach of remembered facts, it was not unusual to award three marks for the particle part of the explanation with many more than three relevant points being made. The wave part was less well answered and frequently ignored.

Candidates should realise that full marks will not be awarded for a comparison type of question if both parts are not addressed.

Examiners observed that answers set out as a sequence of simple statements, such as a bullet point style, usually scored highly but were rarely seen.

(i) the Th	frequency of the I	ight is increased will have	a hizhr	energy	(2)
(ii) the More	intensity of the lif	ght is increased. Will be give	975 <i>x</i>		(2)

*(b) Explain how the photoelectric effect supports the particle model of light and not the wave model of light. (4)Because after the electrons in the atom have recieved the drop down a level, when they drop down a the energy as a individual

Results Plus Examiner Comments

Scores 1, 1, 0. In the first two parts the instruction to state AND explain has not been followed, and the last part shows confusion with emission spectrum production.

Photoelectric effect and spectra both involve quanta of electromagnetic radiation, but you must be sure to know which is which.

12 Monochromatic light is shone onto the surface of a clean metal plate. The photoelectric effect results in electrons being emitted from the surface. (a) State and explain the effect on the emitted electrons if (i) the frequency of the light is increased (2)e electrons being emitted will have more kinetic energy as The E=hg=f+KePhotons have more evergy (ii) the intensity of the light is increased. (2) More electrons will be emmitted grom the metal as there are more photons in the light

8 GCE Physics 6PH02 01

*(b) Explain how the photoelectric effect supports the particle model of light and not the wave model of light.

(4)As the increase in intersty doesn't increase energy of the electrons the prequency agents the enter Kiretic energy 9 dections the Light under a certain frequency wont emit no metter how antense tions the impression light is a groupor gives discrete perkets of energy called which all as particles

Scores 2, 1, 2. The mark is lost in the second part through not mentioning rate or 'per second'.

In part (b) the case for waves is not addressed at all and there are only observations regarding photons and no interpretation.

When comparing phenomena your answer must refer to both of them.

Question 13(a-b)

The most common outcome in each part of question 13 was a full score, with the great majority gaining five marks for parts (a) and (b) and at least two marks for part (c). There were some problems with applying powers of 10, occasionally with kW but more frequently, if at all, with mm in the last part.

In part (b) candidates occasionally lost a mark by failing to include the unit with their answers. A minority of candidates chose the correct formula but got resistance and resistivity confused and some could not rearrange it. Some did not understand what was represented by the symbol rho and calculated the product of resistivity and length rather than length, apparently satisfied with the product of two variables rather than a single value.

(a) The hairdryer contains a heating element which consists of a long r wound around an insulator. The heating element operates at 230 V rating of 1 kW.	nichrome wire and has a power
Show that the resistance of the heating element is about 50 Ω . $P = \sqrt{2}$	(3)

R	
R = 230 ² 1000	

(b) The nichrome wire has a cross-sectional area of 1.3×10^{-7} m². Calculate the length of the wire. resistivity of nichrome = $1.1 \times 10^{-6} \Omega$ m (2)R= pl A. 1.1×10-6 = SOXL 1.3×10^{-7} L = 2.8 × 10⁻¹⁵ Length = $2.86 \times 10^{-5} m$.

(b) The nichrome wire has a cross-sectional area of 1.3×10^{-7} m². Calculate the length of the wire. resistivity of nichrome = $1.1 \times 10^{-6} \Omega$ m (2) P=PN/A $1.1 \times 10^{-6} \Omega_m = Pl$ 1.3×10^{-37} length of wire = 1.4340-13 Length = 1.43×10^{-3} m

Question 13(c)

The normal approach in part (c) was to use the full resistivity equation rather than applying the ratio of area to length and a large majority got this far. Nearly half completed it successfully and about a sixth failed to apply the factor of two correctly to get from the radius to the diameter.

Physical quantities must have a magnitude and a unit.

instruction to find the diameter has not been followed.

Question 14(a)

In question 14 some candidates clearly confused spectra with the photoelectric effect and there were problems with using the correct technical vocabulary for Physics or in giving specifically detailed explanations.

The majority of candidates suggested an increase of energy, although this was sometimes linked to more vibration or the absorption of photons. Nearly half gained the second mark for the movement to a higher energy level, but some just said 'another' energy level, or referred to a 'jump' between levels without specifying a higher level. Other candidates only mentioned shells. Quite a few candidates referred to the atoms becoming charged, which may have been linked to misapplication of the photoelectric effect.

			/	Glass tube
	Electrode	Phosphor coating	Mercury vapour	Electrode
When the atoms bec	light is switched on, cha	arge flows between the ury atoms then emit ele	electrodes a ectromagneti	nd the mercury c radiation.
(a) What	is meant by the mercury	atoms become excited	?	(2)
It mea	ns they that t	hey absorb e	neigy b	on the moving
electron	e that carry	charge and	He gui	np to different
energy	levels and so	get excited		1

This refers to a jump, but a jump can be down as well as up, so it is not sufficiently detailed.

14 The diagram shows the main components of a fluorescent light tube. Glass tube Mercury Phosphor Electrode vapour Electrode coating When the light is switched on, charge flows between the electrodes and the mercury atoms become excited. The mercury atoms then emit electromagnetic radiation. (a) What is meant by the mercury atoms become excited? (2)gain energy from the flowing of rercury atons and charg vibrate more the Will IS **Examiner Comments** This is an example of an answer that identifies energy gained but not its effect.

Question 14(b)

(b)(i)Having explained excitation in part (a), many candidates repeated this in part (b) (i), sometimes not getting as far as explaining emission. There was similar lack of detail in identifying a move to a lower level, or reference to shells only. The most common lost mark in this part, however, was in failing to identify the radiation emitted as more than just 'radiation' as already given in the question. Some answers referred to the emission, and sometimes absorption, of electrons, or even beta emission.

(b)(ii) Candidates did not usually score highly on this part, although some answers gave straightforward explanations because they had learned spectrum production thoroughly. Many candidates remembered 'discrete energy levels' and little else of merit. Others managed to quote E = hf, but did not explain its relevance. Some candidates identified specific distances between levels, or shells again, rather than differences in energy. Quite frequent references were made to work function energy or threshold frequency in parts ii and iii to explain the production of specific frequencies, showing confusion with the photoelectric effect.

(b)(iii) The straightforward answer 'different energy levels' was seen infrequently. Many candidates referred to different numbers of levels or different arrangements of electrons and different work function was also seen.

(b) (i) Explain how the excited atoms emit radiation. (2) As release electrons which Bary emilted radiation R (ii) Explain why only certain frequencies of radiation are emitted. (3)Because change How recieved between aboms , 50 all (iii) Some of the radiation is ultraviolet radiation which the human eye cannot detect. The phosphor coating absorbs the ultraviolet radiation and emits visible light. Suggest why the phosphor coating emits different wavelengths from the mercury. (1)different electron configuration. Beconse phosphor. has **Examiner Comments** Scores 0, 0, 0 This refers to the emission of electrons, then goes on to show that the photoelectric effect is being considered, and finishes by

talking about electron configuration without reference to energy.

(b) (i) Explain how the excited atoms emit radiation. (2)Excited electrons preper to be more stuble at the grand State these the electrons will gall down discrete energy levels, emitting their energy os they desite the energy is then emitted os receliation. Normally visible light. (ii) Explain why only certain frequencies of radiation are emitted. (3)aton has unique discete energy levels Every which emit differst wavedurgths. Therefore only creatan frequencies cre enuted dre to the falling of electros to de OPEN only a certain frequerey energy rerz a CON he seen er the emession spectrum relating to the element. THED clipting event atoms from earch other. The we con all NOL CASIN uners reate different usualengths, the SLOPE TV equerey wereleigth the higher the (iii) Some of the radiation is ultraviolet radiation which the human eye cannot detect. The phosphor coating absorbs the ultraviolet radiation and emits visible light. Suggest why the phosphor coating emits different wavelengths from the mercury. (1)AS phospher cra mercury are different elements, this have unique discrete energy levels, thus different unelergitis falling of electrons in the energy levels one produced due the to

Question 15(a-b)

(a) There was evidence that most candidates had an understanding of the general principle, but this was not often translated into full marks. The great majority identified reflection at a relevant boundary and most of those linked the echo time to distance. There was a great deal of poor expression, with many answers describing the signal 'bouncing' from a surface. Relatively few dealt with building the image in any way and the third mark, if given, was usually for describing the timing between pulses.

(b) The Doppler effect was not applied well to this context, many candidates simply describing a stethoscopic process for listening to the heartbeat. The mark most commonly given was for a suggestion of a change of frequency or wavelength. A moving surface for the reflection of the wave was rarely specifically identified, repetition of 'heartbeat' from the question being common. Many answers described the change in frequency as a property of the direction of travel of the wave, rather than movement of the source. Some candidates confused sound with electromagnetic radiation, referring to ultraviolet radiation and sometimes even red shift.

15 The photograph shows the image of a fetus inside its mother's uterus. Ultrasound was used to produce this image. (a) Explain how ultrasound pulses can be used to build up the image of the fetus in the uterus. (3) A pulse is used to distinguish specif Shaply borders. One owhere has to Sent and can be sent another de s den indi this gwe wze. on (b) Explain how the Doppler effect is used to detect the heartbeat of the fetus. (2)object is moving towards you the IC ze of the wondergth will get smaller so the the sound given will be higher. Is smening moving among the distance travelled by analer resulting is Speaneney. and sreavency of hearboat Seterted

15 The photograph shows the image of a fetus inside its mother's uterus. Ultrasound was used to produce this image. (a) Explain how ultrasound pulses can be used to build up the image of the fetus in the uterus. (3)ultrasound pulses have large longer wavelength and lower frequecy so H Pass through the literus and then bounce SFF Ke Fetus in back to the computer to give an image ofte fetus (b) Explain how the Doppler effect is used to detect the heartbeat of the fetus. (2)The heartbeat yets louder as you move Closer because of en encrease of Frequency a as you more away the wavelength gette longer . O the heart beact sounds quiter. **Examiner Comments** Ó, 1 In part (a) the word 'bounce' is used instead of reflect. **NIS** 2esul In (b) a change of frequency is **Examiner Tip** identified, but the reason is linked to Use correct technical vocabulary. distance and confused with amplitude.

22 GCE Physics 6PH02 01

Question 15(c)

This was intended as a straightforward application of the pulse-echo technique, but the factor of 2 was frequently misapplied, or even used twice. Some candidates took 'half the length of the ultrasound pulse' to be 'half the ultrasound wavelength' and applied the wave equation. The marks gained by students were fairly evenly split between zero, 1 for applying the speed equation and 3 for a correct answer.

(c) The smallest detail that can be seen on the image is half the length of the ultrasound pulse. The thumbnail on the fetus is 0.50 mm thick. The speed of ultrasound in the thumbnail is 2000 m s⁻¹. Calculate the maximum pulse duration if the thumbnail is to be seen on the image. (3)speed= distance. Turie Tune = 500 m = 0.265. Total/max. tuic = 0. 05 x2 = 0.53. Maximum pulse duration = $O \cdot S \cdot S$. esuit **Examiner Comments** Correct method, but a serious error of scale due to a mistake with the units. 0.5 s for a speed of 2000 m/s should ring some warning bells. US

Examiner Tip

Apply the common sense test to answers.

(c) The smallest detail that can be seen on the image is half the length of the ultrasound D pulse. The thumbnail on the fetus is 0.50 mm thick. The speed of ultrasound in the thumbnail is 2000 m s⁻¹. Calculate the maximum pulse duration if the thumbnail is to be seen on the image. (3) 0.5×10-3 = 2.5×10-3 = 1.25×10 2.5×10 2000 Maximum pulse duration = 1.25×10-7 S

The factor of 2 has been misapplied and the final unit has been omitted.

Examiner Comments

Question 16(a)

This question was characterised by imprecise use of technical vocabulary despite a general understanding in many cases.

While a large majority gained one mark, this was often only for the obstacle or gap and only a half got both marks. As in previous series, bending of waves is not sufficient to describe the spreading of the waves. Some candidates used diagrams, but the question asked them to 'state' the meaning and without extensive labelling the diagrams did not often gain specific credit. As in previous series, some candidates think the waves travel through obstacles.

16 (a) State what is	meant by diffraction.	(2)
The bending different n	of light caused by makes trows	lling through
	Results lus Examiner Comments This shows why 'bending' is not accepted - it is more appropriate for refraction.	
16 (a) State what is r	neant by diffraction.	(2)
Pre spre of waves	ading out of waves on the , through a slit.	norenez9

between answers supplied by the candidate.

Question 16(b)

Only half of the responses gained any credit, with only a third of those getting two marks. This is a standard definition and should be quoted easily, but half did not clearly describe that there must be two or more waves and the great majority did not identify the sum of displacements. If there was reference to addition it was more likely to be amplitude, but it was more common to read about either constructive or destructive interference.

(b) State the principle of superposition of waves. Here's Wavefronts a metiple of 2/2 wavelengths apart cause constructive interference.	(2)	
Results Plus Examiner Comments		

This is a typical answer which does not address the question as it is written.

(b) State the	principle of superpos	sition of waves	s.			(2)	
Maw	h Kum a	e in	phere	Wh	Ne >	ime	
A.	equercy and	While	lent	Lun	he b	revelling in	
	apporte dive	lins			****	,	
	Res	iultsPlu ner Comme	IS nts				
	This sort of irre frequently. Car itself is not dep	elevant extr Ididates sho Dendent on	a detail was ould note th these condi	s seen lat superp itions.	osition		

Question 16(c)

A majority gained at least two marks, but rarely more than three. The marks were most often for identifying diffraction by the rocks and correct reference to phase or path difference and constructive or destructive interference. The question directed candidates towards superposition, but it was often just quoted and not described in this context as occurring when waves from different gaps in the rocks met. Whether the question is about standing waves or interference from multiple sources as in this question, a standard answer includes the identification of more than one wave meeting and the effect for different phase or path differences. In fact, some candidates thought of this as a standing wave and described what happened when incoming waves met reflected waves. They should remember that this sort of interference, another example being Young's slits, also depends on diffraction which distinguishes it from superposition in a question about standing waves. The final mark, for linking the effect of the amplitude change on the sand, was rarely awarded.

Use the ideas of diffraction and superposition to explain why the sand surface becomes uneven. (5)surgace becomes uneven the waves. The waves have caused super have

This just uses the two key words in the question without any added context or explanation and so will not gain any credit.

There are no marks for simply rephrasing the words in the question.

Use the ideas of diffraction and superposition to explain why the sand surface becomes uneven. (5)First As waves poss the rocks, diffraction occurs He begin and 69/00 0 spread the out. when waves neet, the waves eithe in constructive result destructive Or . interference. This that the means wave shows superposition areas, 30 when the ware ŝ the te. sand, the woter meves reaches sand NOR 5 Some areas resulting on never-ness. As the waves have PIDC crest traight, the will create MOR and uneren sand. at (1), superposition accuis and Ð this will have larger effect a 0 J the sand. At 3. the wave normal effect on the send. has (Total for Question 16 = 9 marks) **Examiner Comments** This got three marks and shows a good general understanding. Candidates are expected to refer to phase difference to identify where constructive and destructive interference occur. US **Examiner Tip** Learn the basic steps in explaining standard phenomena.

Question 17(a)

Surprisingly, only 70% of the candidates could identify refraction correctly, answers including reflection, total internal reflection, perhaps through not looking at point A as instructed, diffraction, and the intentionally ambiguous `reflaction'.

Question 17(b)

About half of the entry got two marks for part (b) overall, but very rarely four. Normals were frequently poorly drawn, often being drawn parallel to the long edge of the paper rather than through the centre of the circle, meaning they could not get the angle marks. The violet ray was as often drawn to the wrong side of the red ray, and sometimes not drawn at all. Total internal reflection was usually shown for the violet ray, but the instruction to show its path 'into the air' was as often ignored as followed.

A ray of white light is incident on a raindrop. The diagram shows the subsequent path of the red light.

Question 17(c)(i)

Only a quarter of candidates described the critical angle satisfactorily in terms of the angle of refraction of 90 degrees. Many just said 'it is the angle when', ignoring its identification as an angle of incidence, and many thought it was the smallest angle for which total internal reflection occurs.

Question 17(c)(ii)

Three quarters calculated the critical angle correctly, even if sometimes by trial and error with the values given. Others were not successful in finding an appropriate permutation of the numbers and used sine of 1.3 degrees. A minority carelessly omitted the symbol for degrees, losing a mark as a unit error, and occasionally they wrote 50.3 °C.

(ii) Calculate the critical angle for red light in the raindrop. refractive index for red light in water = 1.3 $\frac{1}{5inc} = M = M = Sinc + \frac{1}{2}$ 0.769230 = sincS'n-1 = C 5°n-1 (0.769230) = 50.28486277 Critical angle = 50-285 esultsPlus **Examiner Comments** Missing the degree sign is still a unit error. (ii) Calculate the critical angle for red light in the raindrop. refractive index for red light in water = 1.3(2) $\frac{1}{2} = \frac{1}{2} = 44^{\circ}$ da SinC Critical angle = 44° **Examiner Comments** Án example of trying the numbers to get a reasonable sounding answer.

Question 17(d)

The correct equation was almost universally applied, with occasional problems with rearranging, powers of 10 or including the unit.

Question 18

About half the entry got five marks or more, with few scoring under three.

(a) While a Key Stage 3 pupil could find the fault in a circuit with cells of opposing polarity, this seemed to cause a major problem in this question with many, many candidates failing to determine the resultant emf as 7.4 V.

The total resistance as the sum of two resistors in series was rarely a problem, although some candidates treated them as resistors in parallel because of the way they interpreted the circuit. In nearly all cases candidates divided a potential difference by a resistance to calculate a current, although they did not always use the values from the preceding two sections.

(b) (i) Candidates' answers often started with, or showed some recollection of, a variation of $\varepsilon = V + Ir$, but it was rarely applied correctly. The product of current and resistance was usually calculated, but then the addition or subtraction was reversed. Sometimes the total resistance was used.

(ii) Candidates frequently applied current x potential difference, but despite 15 V being quoted the terminal potential difference was usually substituted, showing a misunderstanding of the required quantity. Many candidates who made this error went on to find the correct value for part (ii) while answering part (iii), evidence that they understood the principle but misinterpreted the question. Some candidates showed confusion between energy and power, using E = VIt, and applying unit time but never dividing by time subsequently, and the units J were sometimes given. $P = V^2/R$ was frequently used, unsuccessfully.

(iii) In this part it was not unusual to see the efficiency formula written down and nothing else, but many candidates made reasonable attempts to find suitable values for input and output power even if the preceding parts yielded little of value. The two routes to the answer in the mark scheme were both seen, and a number of candidates got part ii wrong but completed part iii completely correctly 'from scratch' and other found the 'wasted power' and used it with the answer from part ii to get the full marks with an error carried forward.

18 A 'flat' car battery of internal resistance 0.050 Ω is charged with a battery charger. The battery charger consists of a power supply (with negligible internal resistance) of e.m.f. 15 V in series with a resistor of resistance 0.65 Ω . V= 5 - Ir 15 V 7.6 V 0.050Ω 0.65 Ω 'Flat' car Battery battery charger The positive terminal of the car battery is connected to the positive terminal of the battery charger. (a) (i) Determine the resultant e.m.f. of the circuit. (1)Expresse BR- 1.6V= T.HM 15+7-6 = 22-6V Resultant e.m.f. = $\frac{22-6}{22-6}$ (ii) Determine the total resistance of the circuit. (1)R= 0.05 + 0.65 + R2 2948 R= 46.4m2. Total resistance = $46.4 \text{ m}\Omega$. (iii) Calculate the initial charging current. (2) $V = IR \qquad I = \frac{V}{R}.$ = <u>15v</u> = 23.1A. Charging current = 23.1A.

(b) The e.m.f. of the car battery quickly increases to 12.0 V and the charging current becomes 4.30 A. (i) Show that the terminal potential difference across the battery charger is now about 12 V. V: E-Ir (3) V= E-Ir = 12 - (4-3A) (0-05D) - 11-785V ~ 12V. (ii) Calculate the rate at which electrical energy is now being supplied by the 15V power supply. (2)P= IV = 11.785V ×4.3A = 50.6755W = 50.6755 Js -Rate of energy supply = $50 - 65 \text{ Ts}^{-1}$ (iii) The wasted energy in this process is the energy dissipated in the internal resistance of the car battery and the series resistor in the battery charger. Calculate the efficiency of the charging process when the current is 4.30 A. (3)12-11-785 = 0.215 V. V=E-Ir ENRIPER. P.IV. . 12- (4.3) (0.05) $V = \frac{P}{\Gamma} = \frac{50.65}{4.3} = 11.786V$ 'VA = 11.785V. $P=1V \quad 0=\frac{V^2}{R} \quad v^2 = RR$ 17756 8057 Wh V=5. -785+5.74 × 100 = 65%. V=5.74 Efficiency = $65 \cdot 0.7$ **Examiner Comments** 0, 0, 1, 1, 1, 0 The emfs have been added and the resistances combined in parallel, showing two misunderstandings. A current has been calculated, but not with the emf calculated. Ir has been calculated, but subtracted where it should have been added. There is use of P = IV for power, but the wrong pd, and the final answer shows a mix of quantities for efficiency.

	series with a resistor of resistanc	e 0.05 12.	
	·		
	1 7.6V	15 V	
	0.050 Ω	0.65 Ω	
	'Flat' car	Battery	
	battery	charger	
The positive to battery charge	$\frac{1}{2}$	ected to the positive terminal of the	e
(a) (1) Deteri	nine the resultant e.m.t. of the ch	rcuit.	(1)
15	- 7.6	addexr	
nnano ana amin'ny faratra dia mampiasa dia mampiasa dia mampiasa dia mampiasa dia mampiasa dia mampiasa dia mam Internet dia mampiasa	4 11	na an ann an	9+119+494999999999999999999999999999999
		Resultant e.m.f. =	4V
(ii) Detern	nine the total resistance of the ci	rcuit.	
		0 7 0	(1)
0.05	+0.60 =	0.11	
		Total resistance = O -	72
	late the initial charging current	tour ronsunos analiana	างสามารถสัญสิณ <mark>พร</mark> โลส
(iii) Calan	are the initial charging current.		(2)
(iii) Calcu	- 7.4/		
(iii) Calcu	V/R = 7.4	32/3	
(iii) Calcu J =	V/R = 7.4/.7	\$2_J3	
(iii) Calcu J =	$V/R = \frac{7.4}{6.7}$	<i>\$2_0</i> 3	

(b) The e.m.f. of the car battery quickly increases to 12.0 V and the charging current becomes 4.30 A. (i) Show that the terminal potential difference across the battery charger is now about 12 V. (3) E=Vrv V:E-Ir 15 - (4. 5 x 0.65) . \mathcal{V} 12.2 0 (ii) Calculate the rate at which electrical energy is now being supplied by the 15V power supply. (2) P = L V= PRUCISX 4.3 20000 = 69.5 W 64.5 W SANSWC Rate of energy supply = (iii) The wasted energy in this process is the energy dissipated in the internal resistance of the car battery and the series resistor in the battery charger. Calculate the efficiency of the charging process when the current is 4.30 A. KIRACY = Leseful Every output x100 (3) $\frac{1}{1-(100 \times \frac{8}{5} \times 12.943)} = \frac{12.943}{5.5} - \frac{12.943}{5.5}$ 1-/100 x 79.9% Ron? Efficiency = **Examiner Comments** Just to show it is possible, a full mark answer to end with.

Paper Summary

As in previous series, basic calculations such as those using the wave equation and resistance have elicited the best responses, although some candidates need to develop their algebraic skills. Candidates must be sure to include units in numerical answers.

While many written answers demonstrate understanding of new concepts, and therefore progression from GCSE, there is a requirement in many cases for considerable improvement in the precision with which technical vocabulary is applied. Some candidates need to practise setting out their answers in logical sequences, and might consider the 'bullet point' style as an aid to achieving this as they set out their arguments.

Basic definitions need learning until they can be repeated when called for. In this paper examples include superposition, diffraction and critical angle. Standard descriptions of various phenomena also need to be learned so they can be applied to given contexts. Examples from this paper include the photoelectric effect, emission spectra, pulse echo techniques and diffraction patterns. Care must be taken to understand the difference between the quantum phenomena of spectra and the photoelectric effect.

Grade Boundaries

Grade boundaries for this, and all other papers, can be found on the website on this link: http://www.edexcel.com/iwantto/Pages/grade-boundaries.aspx

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code US032779 June 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Llywodraeth Cynulliad Cymru Welsh Assembly Government

